Non-rigidity Degree of a Lattice and Rigid Lattices
نویسندگان
چکیده
منابع مشابه
A degree bound for the Graver basis of non-saturated lattices
Let $L$ be a lattice in $ZZ^n$ of dimension $m$. We prove that there exist integer constants $D$ and $M$ which are basis-independent such that the total degree of any Graver element of $L$ is not greater than $m(n-m+1)MD$. The case $M=1$ occurs precisely when $L$ is saturated, and in this case the bound is a reformulation of a well-known bound given by several authors. As a corollary, we show t...
متن کاملIdeal of Lattice homomorphisms corresponding to the products of two arbitrary lattices and the lattice [2]
Abstract. Let L and M be two finite lattices. The ideal J(L,M) is a monomial ideal in a specific polynomial ring and whose minimal monomial generators correspond to lattice homomorphisms ϕ: L→M. This ideal is called the ideal of lattice homomorphism. In this paper, we study J(L,M) in the case that L is the product of two lattices L_1 and L_2 and M is the chain [2]. We first characterize the set...
متن کاملfeatures of short story in translated and non-translated literature: a polysystemic perspective
ترجمه متون ادبی در دنیای امروز از اهمیت ویژه ای برخوردار است. فرهنگ های مختلف با استفاده از متون ادبی ملل و فرهنگ های دیگر سعی در غنی کردن فرهنگ و ادبیات کشور خود دارند. کشور ما نیز از این قاعده مستثنی نیست. در ایران، ترجمه متون ادبی اروپائی که با دوران مشروطه ایرانی آغاز می شود موجب تغییرات اساسی در فرهنگ، شیوه زندگی و تفکر ایرانیان شده است. در این دوران نه تنها در امورات سیاسی و فکری کشور تغی...
15 صفحه اولQuasi-isometric rigidity of non-cocompact S-arithmetic lattices
Throughout we let K be an algebraic number field, VK the set of all inequivalent valuations on K, and V ∞ K ⊆ VK the subset of archimedean valuations. We will use S to denote a finite subset of VK that contains V ∞ K , and we write the corresponding ring of S-integers in K as OS. In this paper, G will always be a connected non-commutative absolutely simple algebraic K-group. Any group of the fo...
متن کاملa degree bound for the graver basis of non-saturated lattices
let $l$ be a lattice in $zz^n$ of dimension $m$. we prove that there exist integer constants $d$ and $m$ which are basis-independent such that the total degree of any graver element of $l$ is not greater than $m(n-m+1)md$. the case $m=1$ occurs precisely when $l$ is saturated, and in this case the bound is a reformulation of a well-known bound given by several authors. as a corollary, we show t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2001
ISSN: 0195-6698
DOI: 10.1006/eujc.2001.0510